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ON THE P~~~ETRI~ RESONANCE DENSITY* 

V. V. BOLOTIN 

The relation between the asymptotic density of the eigenfrequencies ofelasticsyst~ 
and their reactions to parametric vibrational effects is sxsmined. Main attention is 
paid to the rdatiOIlShip between the density of simple parametric resonancesatwhich 
on@ of the eigenmodes of the system is mostly excited, and the density of the com- 
bined Parametric resonances accompanied by a pairwise interaction of the eigenmodes. 

1. Many elastic SyStSms possess a sufficiently compact eigenfxequency spectrum,especial- 
ly in the high-frequency domain. The approximate nature of the spectrum, the asymptotic den- 
sity of the eigenfrequencies , approxisuttely equal to the number of eigenfrequencies per unit 
frequency band, is of interest for such systems. The higher the asymptotic density of the 
eigenfrequencies, the more intense the dynamic reaction of the system to external vibrational 
effects with slowly varying frequencies , as well as the stationary widebanded random effects 
/I/. 

Let us consider an elastic system whose small vibrations are described by the operator 
equation 

A (t, &I" + fiB (t, I*)u' -i- c (t, tl)u = 0 (1.1) 

Here u (x, t) is the displacement vector in the system V dependent on the coordinate rEJ'C 
R" and the time f~f&,,ccf. This vector is an element of a certain space; we shall assume 
that it is a real separable Hilbert space and that A,I: and C are linear operators in this 
space which are continuous functionsofthetime t and a nonnegative parameter p, where these 
operators become independent of the time as It+ 0 . In the majority of applications it turns 
out that the operators A,B and C are symmetric and positive-definite for all the values of 

t and fi under consideration; moreover, the operator C" is completely continuous. The opera- 
tor d is the gradient of the system kinetic energy, fiB is the gradient of a dissipative func- 
tion, and C is a gradient of the generalized potential energy. The non-negative parameter p 
characterizes the energy dissipation level in the system. For fi=p= 0 equation (1.1) des- 
cribes the free vibrations in an appropriate consematfve system. The vibration eigenmodes 

9; (X)? 7% (r). . ' . are defined as eigen elements of the equation 

(C - w'A)cp = 0 (1.2) 

and the corresponding eigenfrequencies as positive square roots wl, 03, . . of the eigenvalues 
0% of this equation. 

Let the operator coefficients in (1.1) be periodic functions of the.time with period 2' 
and frequency o = 2x f T. The points in the parameter space describing the system properties 
(including the frequency of excitation w) can be separated into two sets according to the 

stability or instability criterion for the trivial solution u(X, t)E 0. For small fi and !I 
the instability domains have the form of wedges adjacent to the w axis /2/. The frequency 
relationships characterizing the disposition of these wedges are called parametric resonances. 
One distinguishes between simple (1.3) and combined (1.4) parametric resonemes 

0 L. 2 Ok ip (k = ,I,?, I : p = 1,2. . ..) (1.3) 

w = (ol + o&)/p (i, k =- 1, 2, . . . ; j + k; p = 1, 2, . ..) (1.4) 

The latter are accompanied by paireise interaction Of the eigen mOdSS q)(X) and vk tx). 

In come well-studied particular caees /2/ , equation (1.1) reduces to a countable set of 
ordinary differential equations with periodic coefficients in each generalized coordinate of 
the system after decomposition into the coordinate basks qi (xl. o%(f), . . . . In these cases, only 

simple resonances (1.3) are possible in the system, and this case will not be considered here. 

In the general ca.se, all the generalized system coordinates interact SO that dltlW3t all CO*in- 

ation resonances (1.4) are realized. 
Let us note that the requirement of symmetricity of the operator Coefficients iS essential 

in (1.1). If this requirement is not imposed, then instead of the combination reSOnanceS Of 

the type (1.41, combination resonances of difference type may be encountered near the freWencY 
relationships 
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0 = 1 Wj - Ok I ip (j, 1: 2 1, 2, . * . ; j # k; p = 1, 2, . ..) (1.5) 

With the exception of singular cases, the density of the combination resonances (1.4) is 
higher than the density of the simple resonances (1.3). Let US assume that the coordinate 
realization of the Hilbert space is truncated to an n-space, i.e., the first n eigenmodes 
are taken into account in the computation. Then n simpleresonancesof the class p and C,,I ; 
'1% n (n - 1) combination resonances of the same class should be expected. For instance, for 

n -Z 100 we will have C,,z = 4950. But this preliminary deduction still says nothing about 
the disposition of the resonances on the axes of the exciting frequencies W. 

Let the eigenfrequency spectrum of the system be sufficiently compact, so that the gen- 
eralized characteristic of the spectrum, the asymptotic density of the eigenfrequencies /3/ 

would have meaning. Let Y (0) denote this characteristic which is asymptotically equal to 
the number of eigenfrequencies per unit frequency band. We here have in mind the asymptotic 
in that parameter (or group of parameters) whose tendency to zero makes the eigenfrequency 
spectrum as compact as desired. In thin and thin-walled elastic systems the ratio of the 
characteristic thickness to the characteristic length or the characteristic radius of curva- 
ture is such a parameter. By analogy with the asymptotic density of the eigenfrequencies, 
we introduce the asymptotic density of the parametric resonances, which are approximately 
equal to the number of resonance relationships of the type (1.3) or (1.4) per unit band of 
exciting frequencies 0. The asymptotic density V,@)(O) of simple resonances of the class 
P, i.e., those to which the natural number p in (1.31 corresponds , is evidently defined as 

VI"' (0)x f V 
(9) 

(1.6) 

The density of all the simple resonances is determined by summing the densities over all 
classes p 

v, (ml = 4 1,;” ((0) (1.7) 

This density is not of noticeable interest for applications since it has meaning only 
for systems without dissipation. For dissipation different from zero the minimal value of 
the parameter p for which instability becomes possible is on the order of filP /2/. There- 
fore,L=;sonances of the class p = 1 are the most dangerous. 

TV@) denote the asymptotic density of combination resonances. This density can 
already not be expressed in terms of the eigenfrequency density by means of a simple relation- 
ship of the type (1.6). To calculate it we used a method analogous to that already used 
repeatedly in problems to estimate the eigenfrequency density /3-66/. 

2. For a sufficiently broad class of elastic systems there are asymptotic estimates of 
the eigenfrequencies which depend weakly on the type of boundary conditions in the high-freq- 
uency domain /7,0/. Under these conditions the eigenfrequencies are ordered by using acert- 
ain wave vector k that takes on continuous values from the positive sector KC R”‘, and one 

cell Ak z Ak,A& . . . Ak, corresponds to each eigenfrequency in the domain A. Here mis the 
dimensionality of the elastic system under consideration. Let w = P(k) denote the asymptot- 
ic dependence of the eigenfrequencies on the wave vector k. Then for the number of eigen- 
frequencies not exceeding a given value o we have the asymptotic estimate /3/ 

N (co) - 
s 

dk (2.1) 

Q(k)<o 
m(L)' dk==dlildXI. ..dli, 

If the function J+'(o) is differentiable in a certain interval, then its derivative v (c,)) 
has the meaning of an asymptotic density of the eigenfrequencies. 
used in (1.6). 

Precisely this density was 

Let us estimate the number of combined resonances (1.4) for which the exciting frequency 
does not exceed the given value of o. This number is estimated asymptotically as 

(2.2) 

where the integration is over the subset 
of wave numbers 

A@@) of the direct product K X K’ of two spaces 

A (pw) = {k E K, k'E K’ : 51 (k) + Q (k')< pw} 
(2.3) 

The coefficient l/2 
twice, 

in (2.2) is introduced in order not to take account of thesameresonance 
to which commutation of the subscripts in the frequencies 

in (1.4). 
Oj and 01 would correspond 

In a number of problems it can be assumed that AL = const over the whole range of 



778 V.V. Bolotin 

wave vector variation. Everywhere that the functions NC(P) (0) is differentiable, the asymp- 
totic density vc@)(o) of the parametric resonances, 
meaning. 

equal to the derivative of ,Ve@)(o), has 
By analogy with (1.7), the density of all the combined resonances, the combined 

density of all the parametric resonances, etc. are introduced. If all the combined resonances 
belong to the difference type, 
(2.2) by 

then it is sufficient to replace the range of integration in 

A(po) = {k= K,k'= li' : 1 B (k)- Q (k') 1 cpt,,} 

Unfortunately, in applications where equations of the type (1.1) are encountered with 
nonsymmetric operators, only part of the combined resonances ordinarily has the form (1.5). 
Hence, without a special analysis of the specific system it is difficult to indicate whatpart 
of the eigenfrequency spectrum will be related to resonances of the sum‘type and what part to 
resonances of the difference type. 

3. Let us exhibit the application of the general relationships (2.1)- (2.3) by two sim- 
ple examples. Let us consider a rectilinear elastic rod of constant cross-section F and 
length I whose bending vibrations are periodically excited in time by an axial force with 
frequency 0 . If the ends of the rod are hinge-supported, then all the generalized coordin- 
ates are separated during the passage over to a coordinate realization of Hilbert space so 
that no combined resonances occur. But, for instance, if one end of the rod is clamped,while 
the other is free, then all the generalized coordinates turn out to be related. For arbitrary 
boundary conditions, we have the following estimate for the eigenfrequencies 

“rr k’(+)“z (3.1) 

Here EJ is the rod bending stiffness, and p is the material density. Noting that the size 
of one cell on the half-axis k>O of the wave numbers is Ak=n/ I, we obtain the known form- 
ula for the asymptotic density of the eigenfrequencies /2/ 

For the example under consideration the general formula (2.2) becomes 

ss dkdk’, 

k’+k”<r: (2~) 

r* (po) = F (Ak)? 

Elementary computations yield formulas for the asymptotic density of the parametric re- 
sonances 

(3.3) 

Comparing these formulas we see that the density of resonances of a di-fferent kind behaves 
differently as 0 grows. If the density of simple resonances is rarefied as w grows (because 
of rarefaction in the eigenfrsquency spectrum), then the asymptotic density of the combined 
resonances remains constant in the whole frequency range. 

For the second example, we take an elastic plate of constant thickness h, material den- 

sity p , and cylindrical stiffness D. Let the plate be loaded by periodic forces with 
frequency o in the middle plane. We consider bending parametrically-excited plate vibrations. 
We will consider the plate to be rectangular with sides al and (I( although the final results 
are apparently not related to this constraint and refer to a plate of arbitrary planform but 
the same area. The asymptotic expression for the eigenfrequencies has the form /7/ 

0 - (!+ 7 !Q) (S)“’ 

and the size of one cell is hk = L?zl(ap*). The asymptotic density of the eigenfrequencies is 

determined by the known expression /2/ first obtained by Courant 

It follows from (3.5) that the asymptotic density of the simple parametric resonances is con- 
stant in the whole band of exciting frequencies. If the plate is supported along the whole 
contour, and the load in the middle plane is distributed uniformly along the sides of the 
plate, then only simple resonances are excited. If the plate is clamped around the cont- 
our then the eigenmodes are separated into several groups according to symmetry classes, with- 
in each of which combination resonances are possible. In the most general case, almost all 
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combined resonances are excited; we examine precisely this case henceforth. 
Application of the general formula (2.2) yields 

1 
R.(P) (0) _ - C 2(Ak)' ss dk dk’, 

4po 
72 (PO) = no Ak 

0 
IklI’+I)i’,-<‘~(po) 

(3.6) 

where the integral is the volume of l/16 -th of a four-dimensional sphere of radius r (PO). 

Hence N,'p'(o) -_p%91(40~~), and we arrive at the following formulas for the asymptotic densities 
of the parametric resonances 

VbfP) (0) = p, (2oa), Y,(P) (0) = p'o / (2&Q) (3.7) 

Comparing these formulas, we arrive at the conclusion already obtained earlier in the 
problem of parametric resonances of a rod: the density of the combined resonances is higher 
than the density of the simple resonances (with the exception of the initial segment of the 
spectrum where these estimates are not applicable). The density of combined resonances for 
plates hence grows asymptotically linearly as the exciting frequency grows. 

4. More interesting problems are associated with parametrically excited vibrations of 
thin elastic shells for which the existence of singularities in the eigenfrequency asymptotic 
density has been detected /3/. These singularities correspond to shrinkage of the spectrum 
in the neighborhood of certain eigenfrequencies with clear mechanical meaning. An elevated 
response of the shells to vibrations , especially wideband random effects /l/ should be ex- 
pected around the asymptotic condensation points. 

Let us consider a thin elastic spherical panel of thickness h, middle surface radius 
R and cylindrical stiffness D. For definiteness, we assume the panel to be rectangular 
with sides al and a,. Forces periodic in time with frequency o act in the panel middle 
surface. We shall consider the parametric excitation of primarily bending vibrations since 
the eigenfrequencies to which the membrane strains correspond primarily are in the remotepart 
of the spectrum for thin shells. Let us assume that the boundary conditions and (or) the 
force distribution in the middle surface are such that almost all the parametric resonances 
(1.3) and (1.41 are excited. For the eigenfrequencieswehavetheasymptotic expression /7/ 

o = [CQ$ + (k,' + k,')'D/(ph)+, OR = (E/p)'I*/R (4.1) 

Remarking that Ak = d(a&, and using the notation from (3.5) for the characteristic 
frequency of the bending vibrations 001 we arrive at a formula for the asymptotic density 
of the eigenfrequencies 

(O<(!JR) 
(4.2) 

(m> OR) 

Formula (4.2), which was first obtained in /3/, discloses an asymptotic condensation 
point at the frequency 0 = ma. This frequency corresponds to radial membrane vibrations. 
Formula (4.2) remains applicable for panels of other shape as well as for a closed spherical 
shell. In the latter case it is sufficient to replace the area of the rectangular panel a,a, 
by 4nRa in the expression for oo, The density of the simple resonances is evaluated 
later by means of (1.6) with (4.2) taken into account. 

I O (@<2aR@) 

vp (0) = I&-(l-gc)‘” (a> z2wP) 
(4.3) 

Going over to the combined resonances, we note that, taking account of (4.11, the domain 
of integration (2.3) will be 

6 (PO) = {k E K, k’ E K' : (OR* i coo* 1 k 1 ‘/ko’)‘l~ + (OIL' -b mot t k’ 1 'ho')", < Pa) 

Here k,2 = 4 x /(a&. To evaluate the integral in (2.21, we go over to new coordinates 
r.2 > 0 

719 
and 8,, 0, ss IO, x / 21. 

k~=ko’j’Zco~~~, ki= koJf/T;; ~0~82, 4-h~~~ sin&, k~'-ko1/~ &II t& 

We obtain a double integral (o = OO/OR) in place of the quadruple integral 

N?(O)- 2 15 drrdre. M (2) = {rI > 0, r, > 0; (1 -/- 4 a*rlS)+ + (i + 4 a'r,*~/~ < z) 

M(m/oR) 
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Still another integratzon is performed e&mentarily. Let us write its result down to- 
gether with an analogous formula fox the cceW.ned resonance density 

where we have used the notation 

The integrals in the right sides of thsss formulas axe reduced to e&iptic integr&r, however, 
the actual. calculations axe rather tedious. The integration limits in (4.5) turned out to be 
matched with the integxands so that the final results is expressed In terms of the complete 
elliptic integrals K(.) and E(.f of the first and second kinds. fntxoducfng the notation f = 
ft-&.$~~*9 where 2-> 2, we write the result in the form 

Taking acCount of (4.41 and (4.61, we finally obtain 

Let us examine two limit cases. The first case is when 042 WdpI which corxssponds to 
resonances at eigenfrequencies in the neighborhood of the condensation point. This Limit is 
finite 

i.e,, there are no combined resonance condensation p&nts in the neighborhood of the frequency 
0 = 2 WRfp , At first glance, such a deduction can seem to be unexpected since there are con- 
densation points near w = 2 Odp fox simple resonanCe$ (they simply reproduce? ths eigenfre- 
quency candensation point at 0 = 0s in multiple respects). However, it is essential that 
the combined resonance density already be considerably higher for a quite moderate distance 
from the frequency o = 2 OR/p than for simple resonances. The other limit case W~WR-C~ 
corresponds tothe passage fromahollonsphericalpaneLtoaflatplate.ISere14.7)goesov~rintcj3.7). 

The results of calculations using (1.63, (3.51, (3.3, 
(4.2) and (4.7) are presented in the Fig.1 for p= I. The 
continuaus lines are constructed for shells with the relation- 
ship osle~= 1 between the characteristic frequencies, while 
the dash& linesare fox ananalogous plate,i.e., for es/%-O. 
As is seen frcun the graph, the asymptotfc density of simple re- 
sonances for a spherical shell is greater than for the corres- 
ponding prate while the asymptotic density of the combined 
resonanices is less, This is explained by the fact that the 
eigenfrequency spectxum for shells starts with the frequency 

*R so that a pair for the formation of combination resonances 
is initially not available for the eigenmodes. This is also 
the reason for the absence of singularities in the fWICtionS 
%.e"'(c& for rlI=%os. Let us also note that the ratio 

Fig-1 

(I( is the Poisson's ratio) can vary within quite broad limits, and is on the order of 1111 for 
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